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Figure 1: Left: A high dynamic range (HDR) image showing UC Berkeley’s South Hall captured at night shown without perceptual tone
mapping. Center: Perceptual tone mapping for low-light conditions. Right: Perceptual tone mapping for low-light conditions with scene
intensities scaled to one-eighth that of the center image.

Abstract

In this paper we present a perceptually based algorithm for mod-
eling the color shift that occurs for human viewers in low-light
scenes. Known as the Purkinje effect, this color shift occurs as
the eye transitions from photopic, cone-mediated vision in well-lit
scenes to scotopic, rod-mediated vision in dark scenes. At inter-
mediate light levels vision is mesopic with both the rods and cones
active. Although the rods have a spectral response distinct from
the cones, they still share the same neural pathways. As light lev-
els decrease and the rods become increasingly active they cause a
perceived shift in color. We model this process so that we can com-
pute perceived colors for mesopic and scotopic scenes from spectral
image data. We also describe how the effect can be approximated
from standard high dynamic range RGB images. Once we have
determined rod and cone responses, we map them to RGB values
that can be displayed on a standard monitor to elicit the intended
color perception when viewed photopically. Our method focuses
on computing the color shift associated with low-light conditions
and leverages current HDR techniques to control the image’s dy-
namic range. We include results generated from both spectral and
RGB input images.

Keywords: High dynamic range imaging, tone mapping, human
perception, scotopic mesopic photopic vision, Purkinje effect, day-
for-night processing.
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1 Introduction

Reproducing the perception of low-light scenes presents challenges
due to changes in how the human visual system responds at dif-
ferent light levels. In well-lit scenes, the eye behaves photopically
with light perception mediated by the short, medium, and long cone
cells. The three types of cone cells have distinct spectral response
functions and they allow perception of a three-dimensional color
space. In near-dark scenes, the eye functions scotopically, with only
the rod cells active. The rod cells have a spectral response function
that is distinct from the cones, and when only the rods are active
color discrimination is dominated by a single perceptual axis, lead-
ing to primarily monochromatic vision. In between the photopic
and scotopic regimens are low-light scenes, such as the one shown
in Figure 1, where the eye functions mesopically. In mesopic vi-
sion all four types of receptors are active and contribute to color
perception.
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Figure 2: Plot of the normalized cone and rod spectral sensitivi-
ties. Long cone sensitivities are shown in red, medium cone sensi-
tivites in green, short cone sensitivites in blue, and rod sensitivites
in black [Bur, 1951; Stockman and Sharpe, 2000].

Each of these four types of photoreceptor has a spectral response
that is linearly independent from the others. (See Figure 2.) This
independence implies that the eye measures a four-dimensional col-
orspace. However, there are only three distinct types of signaling
pathways to the brain from the retina. These pathways are domi-
nated by the cones in photopic vision and by the rods in scotopic
vision, but in mesopic vision the signals from the rods and cones are
combined. Further, the relative weighting in this combination varies
across the retina as local illumination varies within the mesopic
regime. Therefore, although the eye senses in four-dimensions,
communication of color to the brain still occurs within a three-
dimensional colorspace. The compression from four to three di-
mensions is nonlinear and depends locally on the intensity of the
scene. Perceptually, this combination of signals manifests as a shift
in hue that is commonly known as the Purkinje effect.

Unfortunately, the Purkinje effect is not replicated by current cam-
eras or displays. Because humans photopically perceive a three-
dimensional colorspace, commercially available camera and dis-
play technologies also operate in three dimensions, for example us-
ing three color sensors or three color phosphors. Color space stan-
dards, such as ISO RGB or CIE XYZ, explicitly assume that three
dimensions are sufficient to model human color perception. Mon-
itors and printers that include more than three primaries typically
do so to expand the gamut within this three-dimensional space, not
to add extra dimensions of color. These systems assume photopic
viewing and cameras/displays have no way to capture/stimulate rod
response independent from cones. As a result, low-light images
captured by standard cameras either look underexposed or they look
very similar to well lit images. Color variations that do occur be-
tween photographs of dimly and brightly lit scenes are due to differ-
ent colored illuminants, and do not account for the perceptual color
changes due to the Purkinje effect.

Color shifts associated with mesopic vision are an important light-
ing cue. Accordingly, photographers and cinematographers have
developed ad hoc techniques to mimic color effects of vision un-
der low-light conditions. Known as day-for-night techniques, they
include adjusting the color balance or shooting with colored fil-
ters. Other approaches filter the color of environmental light-
ing [Malkiewicz, 1992]. Perceptually motivated models of scotopic
and mesopic vision also play an important role in designing spaces
and making lighting choices, for both aesthetic and safety reasons.
One such example is highway design, where achromatic simula-

tions of mesopic vision are used to measure the effects of lighting
conditions on driving performance [Bullough and Rea, 2000].

We present a computational model of the changes to perceived color
that occur for low-light scenes, and a perceptually based tone map-
ping algorithm that generates standard RGB images that appear
closer to what the standard viewer would experience in low-light
conditions. This algorithm uses only a single point of control, uni-
form scaling of scene luminance, to determine a color change cor-
responding to the Purkinje shift. We use the term exposure to refer
to this scaling as the apparent effect of uniform doubling/halving of
scene luminance would correspond to doubling/halving the length
of exposure when taking a photograph. Our algorithm captures
low-light perceptual effects by approximating the psychophysical
process through which color is perceived. It computes a standard
observer’s rod and cone receptor responses to a scene, and deter-
mines how those responses would be combined to produce the out-
put signals from the eye. Our method then computes the photopic
RGB display image that most closely elicits the corresponding cone
response.

In order to determine how the human visual system responds to a
given scene, our tone mapping algorithm ideally works on spectral
input images. While standard images approximate the spectral den-
sity function at a pixel using only three channels, a spectral image
approximates the continuous distribution of energy at every pixel
using a higher dimensional representation. This representation al-
lows the cone and rod responses to be computed directly by inte-
grating their response functions against the pixel’s spectral density
function.

While spectral images are useful, they are also difficult to acquire.
We review several existing acquisition methods and describe our
own approach which uses multiple images taken through a series
of colored filters. In cases when only a standard RGB image is
available, we reconstruct a plausible spectral distribution that would
produce the given RGB values. Although this preprocessing allows
us to apply our algorithm to RGB input images and produces rea-
sonable results, working with true spectral data is preferred as it
captures effects that are lost by premature transition into a three-
dimensional color space. In particular, photopic metamers may
appear distinct when viewed mesopically or scotopically due to
independent rod contribution. Premature projection into a three-
dimensional color space precludes estimating a rod response inde-
pendent from cone responses.

We include results for several images to demonstrate the effective-
ness of our algorithms. We also provide supplemental data in-
cluding measured filter transmission curves and camera sensor re-
sponses that may be of use to others working on similar problems.

2 Background

The human eye perceives light using four types of photoreceptor:
long, medium, and short cone cells, and rod cells. These types of
receptor each detect a specific distribution of wavelengths, and their
sensitivity functions are linearly independent. The spectral sensitiv-
ities are shown in Figure 2. In addition to spectral sensitivity, the
receptors are also characterized by a range of intensities over which
they are active. Cones operate in photopic, or well-lit, conditions
and rods operate under dark, or scotopic, conditions. Photopic and
scotopic illumination levels overlap in a mesopic range, where both
rods and cones contribute to color perception.

While we have four types of photoreceptor, we only perceive a
three-dimensional colorspace. This limitation exists because the
rod cells use the same pathways as the cones for conveying infor-
mation to the brain. This communication of color to the brain is be-
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Images copyright Adam Kirk and James O’Brien. Painting untitled by Susan Kim.

Figure 3: Left: HDR still life scene with no tone mapping. Right: The image has been tone mapped for low-light conditions.

lieved to be characterized by the opponent color model [Buck et al.,
2000]. In scotopic vision, subjects do not perceive gray scale, but
instead report the perception of monochromatic scenes. In mesopic
vision, subjects experience three-dimensional color perception, al-
beit with a reduced gamut and nonlinear color shift that varies with
intensity [Shin et al., 2004b].

The basic biological mechanism for color perception can be de-
scribed by the opponent color model. This model states that there
are three perception channels. The first is a combination of the long
and medium cone cells, which corresponds approximately to the
red versus green quality of color. The second is a combination of
all three cone cells, which generally describes the blue versus yel-
low qualities. The final channel is another combination of the long
and medium cone cells, and gives an approximation to overall in-
tensity. Experiments show the rod cells also convey information to
the brain using all three of these channels. This particular biologi-
cal configuration explains how the rod cells can create the sensation
of color, and it also gives a sense of why the Purkinje phenomenon
is difficult to capture with a simple model [Cao et al., 2008].

Our method models the responses of the cones and rods to light
in a scene and then uses them to compute perceived color. These
responses can be computed directly from a spectral image, which
gives an approximate distribution of energy in the visible wave-
lengths for each pixel. There are several existing methods for ac-
quiring spectral images. Burns and Berns [1996] use a set of band
pass filters. They sampled the scene under these filters and solved
for the image spectra. Mohan and colleagues [2008] built a system
to dynamically select the spectra best associated with their device’s
input channels. While they get limited data in a single photograph,
such a system could be used to construct a spectral image with mul-
tiple images. The benefit of their system is that the spectral bands
used in reconstruction can be selected dynamically. Schechner and
Nayar [2002] show that it is possible to spectrally image a scene us-
ing video taken through a spatially varying filter. By panning across
the scene, they capture each scene point under the entire range of
their filter. They then construct a spectral image using correspon-
dence. Park and colleagues [2007] showed that one can reconstruct
the reflectance spectra of objects in a scene by imaging the scene
under known multiplexed lighting conditions. This process requires
multiple images and a calibrated light source with a controller.

Yasuma and colleagues [2008] simulated a camera designed to cap-
ture more than three unique frequency bands. They proposed a

modification to the sensor’s Bayer pattern to introduce additional
filters at a lower resolution. With such a system, a traditional RGB
image can still be reconstructed, and at the same time one can ob-
tain lower-resolution spectral information in a single picture. This
approach has the strong advantage of being applicable to scenes
that contain moving objects and where the lighting cannot be con-
trolled. The availability of commercial imaging devices that could
easily acquire spectral images could potentially have many applica-
tions including our low-light tone mapping method.

Our work uses spectral images to perform perceptually based tone
mapping. However, others have addressed the issue using regular
RGB image data. Tumblin and Rushmeier originally introduced
the problem [1993]. Ferwerda and colleagues [1996] model several
characteristics of the visual system, including: threshold visibil-
ity, color appearance, acuity, and time sensitivity. While this work
addresses color change due to decreases in light level, at scotopic
levels their model produces a greyscale image, which is not what
viewers report. Durand and Dorsey [2000] address this problem by
blending a particular color of blue into scenes as light is decreased.
Khan and Pattanaik [2004] use a similar approach to Durand and
Dorsey. In their work, they hypothesize that the blue shift in moon-
lit scenes is caused by rod receptors contributing color as if they
were short cones. They estimate a cone response from the initial
scene and, as the light is reduced, blend an attenuated rod response
into the short cone response. Finally, they convert to RGB space.
While both Khan and Pattanaik and Durand and Dorsey introduce
a color shift, blending a linear amount of a single blue color is in-
consistent with psychophysical data.

Pattanaik and colleagues [1998] examined a variety of important
perceptual effects related to high-dynamic-range scenes, including
effects that occur at low-light levels. They also explicitly consider
rod contribution to perception. Our approach to modeling the Purk-
inje effect goes beyond what they present with a more comprehen-
sive model of the color effects. Kuang and colleagues [2007] pre-
sented the iCAM06 model for rendering HDR images. Their frame-
work accounts for rod contribution in low-light conditions, but with
a less detailed model than ours that operates directly in RGB space.
Both of these methods examined a host of related issues, such as
increased noise and loss of spatial acuity at low light levels, that
would complement our work, which focuses only on color effects.

In addition to these automated methods, it is possible for an artist
to tone map an image for low-light conditions using standard image
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Figure 4: Left: An HDR night scene with no tone mapping featur-
ing UC Berkeley’s Sather Tower. Right: The image has been tone
mapped for low-light conditions. Artifacts on the clock face occur
because the hands moved during image acquisition.

editing tools. Photo editing tools in the hands of a skilled artist can
create stylized effects that can be quite attractive and convey the
general impression of low light. However, manual tone mapping
requires the artist to make arbitrary decisions on how the colors
should be modified and is generally not perceptually correct.

In the vision science literature, researchers have done experiments
to characterize the Purkinje effect and proposed theories to explain
the underlying mechanism. Shin and colleagues [2004a] have pro-
posed a partial model based on data from user studies. Their data-
driven model is based in LMS space. They collected data from
several subjects on how color perception shifts at a set of illumina-
tion levels that are evenly separated perceptually. They then built
a multilinear model based on LMS values as well as illumination
level. Cao and colleagues [2008] also fit a model based on user
studies, however they use a more detailed model of the biology. As
a result, their model is effective at all levels of illumination. Our
tone mapping algorithm is based on the Cao model.

3 Methods

Given the spectral distribution of energy for the light at each pixel in
an image of a scene, our goal is to compute the perceptual response
of the human visual system and then determine a standard RGB
image that will elicit a similar response when viewed photopically
on a standard monitor. With this system a user can capture a spectral
image and use a single exposure parameter to adjust the perceived
brightness of the scene. The resulting image colors will take into
account the Purkinje effect so that photopic, mesopic, and scotopic
vision are modeled correctly. Increasing the exposure value will
move the image towards photopic colors, and decreasing the value
will move the image towards scotopic colors.

3.1 Acquiring Spectral Images

The first step in this process is to acquire a spectral image of the
scene. Our image acquisition method is not the major contribution
of this paper and, as mention previously, a wide variety of other
methods for spectral image acquisition have appeared in the liter-
ature. We build spectral images using multiple RGB images, each
taken through a different color filter. Because we know the sensi-
tivity functions of the camera sensors and transmission functions of
the filters, we can solve for the unknown spectral distribution of the
light entering the camera at each pixel. This method is analogous to

Images copyright Adam Kirk and James O’Brien.

Figure 5: Left: The result of a standard grayscale image con-
version. Right: Our measure of the mesopic value of a pixel,
where lighter indicate a more photopic pixel and darker indicates a
more scotopic pixel. Both images have been scaled to fit the range
[0 255] to highlight differences.

the method of Park and colleagues [2007]. In their work, they im-
age a scene under a series of differently colored lights and solve for
surface reflectance. Mathematically the methods are nearly identi-
cal, but our method solves for the light entering the camera rather
than surface properties and does not require controlled illumination.

Let pc be the value recorded by a camera for some pixel p in color
channel c ∈ {red, green, blue}. If the camera sensor’s sensitivity
function is Sc(λ), then we can write

pc =

∫
Ω

Sc(λ)R(λ) dλ (1)

where R(λ) is the spectral distribution of light incident at pixel p,
and Ω = [400nm 700nm].

We wish to solve for R(λ), but the three color channel limit of
commercial cameras is insufficient for uniquely resolving the func-
tion [Kohonen et al., 2006]. Ideally we could add additional chan-
nels to the camera to further sample the spectra, but because doing
so is infeasible we instead take multiple images with each image
taken through a different transmissive filter. If Fi(λ) is the trans-
mission function for one of these filters then the pixel value in an
image taken through that filter is given by

pc,i =

∫
Ω

Sc(λ)Fi(λ)R(λ) dλ . (2)

To determine the spectral image we need to compute the spectra
R(λ) that best predicts all the observed values pc,i.

We represent the spectral functions using cubic B-spline basis func-
tions so that, for example, we have

R(λ) = B(λ)Tr (3)

where B(λ) is a vector of uniform cubic B-spline basis functions
over the interval Ω, r is the vector of control points for R(λ), and ·T
denotes transpose. We use 10 knot points uniformly distributed over
Ω. This number was selected as sufficient based on spectrometer
measurements from a collection of Munsell color squares. Modern
illuminants, such as fluorescent or LED lights, tend to have sharply
peaked spectral distributions that would not be well resolved using
a smooth B-spline basis. However, we will integrate the distribu-
tions against the smooth rod and cone sensitivity functions, so a
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smoothed representation of sharp peaks will not adversely impact
our results.

With this discretization we can rewrite (2) as

pc,i =

∫
Ω

B(λ)Tsc B(λ)T f i B(λ)Tr dλ . (4)

All quantities except r are known, so we move r out of the integral
and rewrite as

pc,i =

(∫
Ω

B(λ)TscB(λ)T f i B(λ)T dλ
)

r

pc,i =vT
c,i r

(5)

where vT
c,i is equal to the expression in parentheses.

We collect all of these equations for each channel and all n filters
together as

V =



vT
red,1

vT
green,1

vT
blue,1

vT
red,2
...

vT
blue,n


p =



pred,1
pgreen,1
pblue,1
pred,2
...

pblue,n


. (6)

We then solve for r in a least-squares sense while constraining the
solution to be positive using

minr ‖Vr − p‖22

s.t. B(λ)Tr ≥ 0 .
(7)

To capture the spectra in a scene, we use high dynamic range (HDR)
input images [Debevec and Malik, 1997]. If a sensor becomes satu-
rated it becomes impossible to determine exactly how much energy
was incident at that pixel. In our examples, we captured HDR im-
ages under each transmissive filter, registered the HDR images to
each other, and normalized them all to a one second exposure.

All images were captured using a Canon EOS 300D in RAW format
and without gamma correction so that the data was in a linear en-
ergy space. The camera’s spectral sensitivity was determined exper-
imentally by imaging a known broad-spectrum light source through
a set of known transmissive filters. The light source was a Koehler
Illuminant with a SoLux Q50MR16/CG/47/36 4700 Kelvin Halo-
gen Bulb driven by a regulated DC power source. The filters used
for calibration were a set of Roscolux polycarbonate filters.

The spectral image data were captured for static scenes using Cokin
P-series filters, specifically filters P001, P002, P003, P004, P005,
P006, P020, P036, P047, P050, and P231. The goal in selecting
these filters was to find a linearly independent set that sufficiently
spanned the visible wavelengths. We determined the spectral trans-
mission of each filter as a percentage of incident light using an Ed-
mund Optics Visible Wavelength USB CCD Spectrometer, model
BRC111A-USB-VIS, which has a wavelength resolution of 1 nm.
A sample input series with an inset plot of percentage of light trans-
mitted per wavelength by the filter can be seen in the left column of
Figure 11.

With a three channel camera sensor and eleven filters we have 33
independent measurements of the R(λ) which is somewhat exces-
sive for estimating the four values of the rod and cone responses at
each pixel. However, these spectral images have uses in other ap-
plications. The camera and filter calibration data and the raw image
data is included in the supplemental data for this paper.

Images copyright Adam Kirk and James O’Brien.

Figure 6: Top: An HDR image of the Fremont Troll with no tone
mapping. Bottom: The image has been tone mapped for low-light
conditions.

3.2 Tone Mapping for Low-Light Conditions

Once we have acquired spectral image data, the first step of our
tone mapping procedure is to determine the cone and rod response
to the acquired data. To convert the spectral image to LMSR
space, we integrate each pixel’s spectral distribution against the
standard rod and cone response curves [Bur, 1951; Stockman and
Sharpe, 2000]. If a pixel has spectrum R(λ) and the normalized
response curve of the eye for a given receptor is E j(λ), where j ∈
{Long,Medium,Short,Rod}, then the normalized four-dimensional
LMSR response q can be calculated as

qn =

∫
Ω

En(λ)R(λ) dλ (8)

We compute this integral using the same B-spline representation
described in the previous section.

At this stage, the image represents the rod and cone responses that
would result from the scene being viewed by a standard observer.
We use this information to determine the Purkinje Shift, which
we model as an offset to the long, medium, and short channels
such that the result is the perceptually closest photopic signal to
the mesopic signal [Cao et al., 2008]. More specifically, let q̂ be
a three-dimensional long, medium, and short cone response. We
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Figure 7: Top: An HDR image of the Seattle skyline as seen from Kerry Park at night with no tone mapping. Bottom: The image is tone
mapped for low-light conditions. Some differences are due to lights being switched on and off in the scene during acquisition.

show how to compute ∆q such that

q̂ = [qLong qMedium qShort]T + ∆q (9)

where q̂ will be the three-dimensional cone response most percep-
tually similar to the four-dimensional cone and rod response q.

As discussed previously, rods and cones share neural pathways.
The signals passing through those pathways are a combination of
rod and cone receptors, subject to sensitivity regulation [Miyahara
et al., 1993]. The regulated signals g are

gLong = 1/(1 + 0.33(qLong + κ1 qRod))0.5

gMedium = 1/(1 + 0.33(qMedium + κ1 qRod))0.5

gShort = 1/(1 + 0.33(qShort + κ2 qRod))0.5

(10)

where κ1 and κ2 determine the rod contribution to the neural sig-
nals [Cao et al., 2008]. These mixing terms depend on the mesopic
viewing conditions. They are near zero during photopic vision, and
reach an approximate value of κ1 = 0.25 and κ2 = 0.4 during fully
adapted scotopic vision [Cao et al., 2008]. For our results we as-
sume full adaptation and use the above values. We found that modu-
lating κ1 and κ2 according to standard mesopic adaptation produced
a system that was too sensitive to exposure and made it difficult to
obtain a desired result. We could construct a system with a similar
response but higher κ1 and κ2 fidelity by giving the user a non-linear
exposure control.

As discussed earlier, our tone mapping procedure is based on rod
contribution causing a shift in the opponent color model space. The
opponent color model expresses color as three different combina-
tions of the cone sensors. For a pixel in LMS space, q̂, the corre-

sponding pixel in opponent color space o is computed as:

oRed/Green = q̂Medium − q̂Long

oBlue/Yellow = q̂Short − (q̂Long + q̂Medium)

oLuminance = q̂Long + q̂Medium

(11)

where the first component of o roughly measures depth of red ver-
sus depth of green, the second channel measures depth of blue ver-
sus depth of yellowness, and the third channel measures luminance.
Note that this transformation can be expressed as an invertible ma-
trix such that o = Aq̂.

To determine the amount of color shift, each term in the opponent
color model has a weighted amount of the rod response added. The
weight is a function of the sensitivity regulated receptor response
g. Specifically, the color shift in the opponent color model ∆o is:

∆oRed/Green = x κ1

(
ρ1

gMedium

mmax
− ρ2

gLong

lmax

)
qRod

∆oBlue/Yellow = y
(
ρ3

gShort

smax
− ρ4

(
α

gLong

lmax
+ (1 − α)

gMedium

mmax

))
qRod

∆oLuminance = z
(
α

gLong

lmax
+ (1 − α)

gMedium

mmax

)
qRod

(12)
Where lmax = 0.637, mmax = .392, and smax = 1.606 are the
maximum values of the cone fundamentals [Stockman and Sharpe,
2000], and psychophysical data [Cao et al., 2008] is used to fit the
ρ and α as: ρ1 = 1.111, ρ2 = 0.939, ρ3 = .4, ρ4 = 0.15, and
α = .619. The above leaves free parameters x, y, and z. These
parameters control the scale of the shift for each of the channels in
the opponent color model. Psychophysical data suggests that x and
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y are the same, but z is independent [Cao et al., 2008]. For all the
examples in this paper, we used x = y = 15 and z = 5. Returning to
Equation 9, we have

q̂ = [qLong qMedium qShort]T + A−1∆o (13)

giving the photopic response q̂ most perceptually similar to the
original mesopic response.

The final step is to convert from LMS space into RGB space for
display. At this stage, we know the desired excitation of cones in
the retina and we seek to find the display settings that produce that
excitation. This process is essentially a color matching problem
where we need to know the mapping from the display’s primaries,
MRed,Green,Blue(λ), to viewer stimulus. These spectra are device de-
pendent and one can map values for one display onto another using
standard color matching functions. Further, cone responses depend
on adaptation to the ambient viewing conditions [Mantiuk et al.,
2009]. Our results were computed using the measured spectral
output of an Apple Cinema HD Display with the default display
profile, and we assume viewing in a dark room. Common experi-
ence shows that viewing RGB images calibrated for one display on
different display typically produces reasonable results, but applica-
tions demanding precision should use color matching functions ap-
propriate to the actually display device, display driver color profile,
and viewing conditions.

Let M be the matrix that maps the display’s spectral emission onto
the cone fundamentals

M =

 mLong,Red mLong,Green mLong,Blue
mMedium,Red mMedium,Green mMedium,Blue
mShort,Red mShort,Green mShort,Blue

 , (14)

with the components of M given by mx,y =
∫

Ω
Ex(λ)My(λ) dλ. We

solve for the final RGB settings p∗ that maps to our desired photopic
response q̂ with

min
p∗

‖M p∗ − q̂‖22

s.t. p∗ ≥ 0
(15)

When solving for a given pixel, we first try the unconstrained so-
lution, p∗ = M−1 q̂. In most cases, the result of the unconstrained
problem satisfies the constraint. In the event that it doesn’t, a solu-
tion is found by solving a small quadratic programming problem.

The above optimization converts pixels from LMS space into RGB
space, but the values still need to be compressed to the appropri-
ate dynamic range. For photopic images, the target dynamic range
would be the full range of the display. However, low-light scenes
are generally perceived as dim because illumination that falls in the
mesopic or scotopic range doesn’t approach the saturation level of
cone receptors. As a result, images tone mapped for low light levels
look odd when displayed on a bright monitor using the device’s full
range. We account for this effect by mapping to a reduced dynamic
range. This method is similar to standard cinema approaches which
use neutral density filters or shortened exposures in filming what
should appear to be night scenes [Malkiewicz, 1992].

Our range reduction technique starts with standard HDR compres-
sion. We use the HDR compression algorithm of Durand and
Dorsey [2002] implemented using the bilateral filter approach de-
veloped by Paris and Durand [2006]. From here, our operator
further compresses pixels in the low dynamic range (LDR) image
based on their mesopic levels. Our measure of mesopic level is
based on rod attenuation in the rod-mediated opponent color model.
Consider ∆oLuminance in Equation 12. Rod contribution to ∆oLuminance
is at a minimum during photopic vision, which corresponds to the

Images copyright Adam Kirk and James O’Brien.

Figure 8: Left Column: Spectral image tone mapped for low-light
conditions. Right Column: Non-spectral HDR image of the same
scene mapped into LMSR space before applying our tone mapping
procedure. For both columns, exposure decreases from top to bot-
tom. This scene was not used in training our mapping from RGB
space to LMSR space.

rod multiplier on ∆oLuminance evaluating to zero. If we pull out this
scalar factor as

w =

(
α

gLong

lmax
+ (1 − α)

gMedium

mmax

)
, (16)

then a pixel is fully photopic when w = 0. The larger w grows,
the further into the scotopic range we can consider the pixel and
the more we reduce the dynamic range. By examining the average
value of w across an image for a variety of exposures, we can pick
a constant β for which we consider the pixel fully scotopic. In our
examples, β = 1. Finally, we choose a parameter γ ∈ [0 1] which
is the maximum ratio by which we reduce the range of a scene. In
our examples, γ ranges between 0.25 and 0.5. Given these param-
eters, the maximum value x for a pixel with mesopic factor w is
x = max(1 − w

β
(1 − γ), γ) ∗ ν, where ν is the maximum value of the

display’s dynamic range, normally 255. A pixel with mesopic fac-
tor w is then linearly mapped into the range [0 x]. See Figure 5 for
a comparison of the mesopic factor to a standard grayscale image.

4 Approximation for Non-Spectral Images

Spectral images contain information necessary to compute rod and
cone responses for the tone mapping procedure we have described,
however they also require special effort to acquire which may not
always be feasible. For cases where spectral information isn’t avail-
able, we describe a data-driven alternative that, when given an RGB
value, infers a plausible LMSR value. This procedure requires loft-
ing from a three-dimensional space to a four-dimensional one, and
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Original image from the OpenEXR dataset, copyright Industrial Light and Magic.

Figure 9: Left: A non-spectral HDR image. Right: The result of
our tone mapping applied to the image mapped into LMSR space.

in the process some extra information must be generated. In par-
ticular, while the standard RGB primaries allow a good estimate
of cone responses, they don’t provide enough information for an
independent estimate of rod response.

Other researchers have reported that the reflectance spectra for
many common scenes can be fairly well approximated using a small
number of bases [Maloney and Wandell, 1987]. This result implies
that for many scenes the rod response is strongly correlated with
the cones. For plain RGB images we take advantage of this corre-
lation by using a linear mapping from RGB space to LMSR space.
For the examples in this paper shown in Figures 8, 9, and 10 we
build the mapping using the spectra we acquired for other images.
Alternatively, one could build the mapping using existing material
databases [Kohonen et al., 2006].

To build the mapping we solved for the matrix H that best satisfies
Q = HP, where Q is a matrix of LMSR values from observed spec-
tra and P is a matrix of the corresponding RGB values. For our data,
this fit had high residual indicating that rod responses generally are
linearly independent from the cones. However, it is not clear how
sensitive viewers would be to the types of errors introduced, partic-
ularly if they have never viewed the scene firsthand under scotopic
or mesopic conditions. Furthermore, mesopic vision is character-
ized by a reduced gamut which appears to make many errors less
noticeable. We found the results to be generally satisfactory for low
light levels, but artifacts appear in brighter scenes. Luckily we have
the original RGB values as a photopic reference. Based on this rea-
soning, we propose the following pipeline for non-spectral images.
First, generate LMSR data as described above. Next, tone map the
LMSR data to produce an initial mesopic image. Finally, for each
pixel blend between the source image and the mesopic image based
on w to produce the final result.

5 Results and Discussion

We present several scenes for evaluation. None of the images in
this paper have been subjected to any photo-processing other than
the methods described, plus cropping, rotating, and downsampling
the final images for publishing. The raw input images and resulting
spectral images are included in the supplemental data for this paper.
We also include LMSR images and standard RGB HDR images.

Figure 11 shows a visual comparison of the steps in our method.
The left column shows our input sources. Each image in the left
column is an HDR image under a different transmissive filter. The
second through fifth columns demonstrate different aspects of our
methods as exposure varies. Each row in the second through fifth
columns has the same exposure. The second column shows the
result of our range reduction technique without performing tone
mapping. Note that even in the darkest image it is still possible
to distinguish color. The third column shows how our mesopic fac-
tor changes with exposure. The fourth column shows the result of
our tone mapping procedure mapped to the full range of the dis-

play. These images clearly demonstrate distinctive hue shifts. The
final results of our full algorithm are shown in the fifth column. In
the fourth and fifth column, note that similar reds in the apple and
mango map to drastically different colors in the shortest exposure.

The majority of the images in this paper demonstrate our tone map-
ping on spectral images. In Figure 3, we show how our tone map-
ping process varies with proximity to lighting. In the original im-
age, the reddish-brown of the Scotch whisky in the bottle furthest
from the light source deepens considerably, while the reds in the
dragon remain bright. Figure 4 shows an outdoor scene. Neighbor-
ing pixels can have extreme lighting discontinuities, and the con-
trast between the trees and the tower shows our method respects
these discontinuities. The well-lit tree between the tower and the
building as well as the white walls of the building are good exam-
ples of how different colors shift in the transition from photopic to
scotopic light conditions. Figure 6 shows an outdoor statue cap-
tured at night. The tone mapped version is not only closer to the
viewer’s experience in near dark, but also demonstrates a useful
artistic effect. Figure 7 shows a night skyline. The original HDR
image contains a large amount of light scattering. The tone mapped
version demonstrates a reduction in the perceptual effect of this
light. Figure 1 shows another night scene. The original image
contains little contrast between the doorway and the walls of the
building, while there is a strong change in hue in the tone mapped
image. Comparing the hue shift for the red brick to the hue change
for the bushes and trees demonstrates the difference in relative hue
change for different colors. The red brick underneath the street light
contains another example of hue change as a function of proximity
to light sources.

Finally, we demonstrate our tone mapping process using non-
spectral images as input. In Figure 8 we compare results from tone
mapping spectral data and plain RGB data. Note that while spectral
data has a smoother transition as the exposure decreases, the RGB
data results in a similar scotopic image and still demonstrates hue
change based on proximity to light sources. Figures 9 and 10 com-
pare standard HDR images with our tone mapped versions. Note
that bright areas in the HDR images and tone mapped images are
similar, while the differences in the shadows are more significant.

The human visual system has many adaptive mechanisms, and our
work focuses on just one, namely the interplay between rods and
cones in the early stages of vision. Subsequent to the processing
that occurs in the eye there are other adaptive mechanisms, such
as color constancy, that are not incorporated into our perceptual
mapping. Furthermore, there are additional scotopic and mesopic
effects that we chose not to model. These include well-studied ef-
fects such as the loss of acuity and increased noise [Ferwerda et al.,
1996]. If desired, these effects could be combined with our percep-
tual tone mapping method.

One somewhat arbitrary aspect of our method is that the range of
intensities in an image can be scaled however one desires. For ex-
ample, one could adjust the exposure parameter so that a bright,
sunlit scene was rendered with scotopic treatment. Generally do-
ing so will not produce the impression of a nighttime scene without
additional processing. Among other issues, the color of the illu-
mination from the sun would be inconsistent with a night scene as
would the detail and color in the sky. A less extreme example ap-
pears in Figure 1. The lamp in the center of the scene and other
light sources provided a fair amount of illumination, and the mid-
dle image is most consistent with our firsthand impression of the
scene. The right image takes some artistic license and corresponds
to a nonexistent location with much dimmer lighting.

The methods we have described provide a perceptually motivated
model of how human viewers perceive low-light scenes. We believe
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Original image “Foggy Night” copyright Jack Tumblin, Northwestern University.

Figure 10: Left: A non-spectral HDR image. Right: The result of
our procedure applied to the image mapped into LMSR space.

that they will have uses in applications where one wishes to predict
actual viewer experiences, convey the correct impression of low-
light scene, or generate artistic effects.
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Images copyright Adam Kirk and James O’Brien.

Figure 11: The first column on the left shows our input images. Each of these images is taken under a different filter, and
the transmission properties of the filter are shown inset as a percentage of light transmitted versus wavelength from 400 nm
to 700 nm. All rows in the second through fifth columns are the same exposure, which decreases from top to bottom. The
second column shows the original image with our reduced range technique to simulate darkness. Note the lack of color
shift. The third column shows an image representing the mesopic blend, where light indicates more photopic and dark
indicates more scotopic pixels. The fourth column shows the original scene with a color shift, but the scene is mapped to
the full dynamic range. The fifth column shows our range reduction technique applied to the fourth column. The images
on the far right are higher resolution views of selected images in the fifth column.
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