Real-Time Ambient Occlusion for Dynamic Character Skins

Adam G. Kirk*
UC-Berkeley

Okan Arikan'
UT-Austin

Figure 1: Time-lapse screen capture showing ambient occlusion values calculated in real-time.

Abstract

We present a single-pass hardware accelerated method to recon-
struct compressed ambient occlusion values in real-time on dy-
namic character skins. This method is designed to work with
meshes that are deforming based on a low-dimensional set of pa-
rameters, as in character animation. The inputs to our method are
rendered ambient occlusion values at the vertices of a mesh de-
formed into various poses, along with the corresponding degrees of
freedom of those poses. The algorithm uses k-means clustering to
group the degrees of freedom into a small number of pose clusters.
Because the pose variation in a cluster is small, our method can de-
fine a low-dimensional pose representation using principal compo-
nent analysis. Within each cluster, we approximate ambient occlu-
sion as a linear function in the reduced-dimensional representation.
When drawing the character, our method uses moving least squares
to blend the reconstructed ambient occlusion values from a small
number of pose clusters. This technique offers significant memory
savings over storing uncompressed values, and can generate plausi-
ble ambient occlusion values for poses not seen in training. Because
we are using linear functions our output is smooth, fast to evaluate,
and easy to implement in a vertex or fragment shader.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1 Introduction

Character animation is ubiquitous in computer graphics. The most
obvious examples are found in video games and motion pictures.
Realistic character shading, or global illumination, improves the
three-dimensional quality of the character and helps the viewer

*email:akirk @cs.berkeley.edu
email:okan@cs.utexas.edu

place the character in the scene. Unfortunately, computing global
illumination is a time-consuming process.

Ambient occlusion has emerged as a viable alternative to a full
global illumination solution[Landis 2002][Christensen 2002]. Am-
bient occlusion at a point is the cosine weighted integral of the vis-
ibility function. Assuming the scene is enclosed in a spherical area
source light, ambient occlusion corresponds to the amount of light
that will reach each point. While computing ambient occlusion is
less expensive than computing global illumination, it is still too ex-
pensive to be solved for in real-time. This is due to the fact that it
requires sampling the hemisphere around each point to determine
visibility.

Recent advances in data-driven character animation have shown
pose subspaces to be a useful tool in manipulating and compressing
motion information[Chai and Hodgins 2005][Arikan 2006]. Pose
subspaces represent motion data as points in a set of linear sub-
spaces. Poses that are close together are represented as points in
the same linear subspace, while poses that are significantly differ-
ent are defined as points in separate subspaces. Our paper examines
the benefits of using pose subspaces to specify ambient occlusion.

Our method takes a data-driven approach to approximating ambient
occlusion in real-time. It builds a set of linear functions over several
subsets of poses, then produces ambient occlusion values using a
blend of these functions. Because we are using linear functions,
our output is smooth, fast to evaluate, and easy to implement in a
vertex or fragment shader.

2 Related Work

Recently, several groups have examined hardware accelerated am-
bient occlusion calculation. [Sattler et al. 2004] renders data from
multiple directional light sources into depth maps to calculate ambi-
ent occlusion. Similarly, [Bunnell 2005] describes a method for cal-
culating ambient occlusion and indirect lighting in real-time. This
algorithm works in multiple passes of hardware. Each pass is de-
signed to reduce the error in the approximation. In contrast, our
method pushes much of the work to the precomputation stage, so
evaluation consists of a fast, single pass.

Precomputing ambient occlusion values allows for more efficient
rendering. [Kontkanen and Laine 2005] precomputes ambient oc-

clusion fields for static objects as a function of shape and distance
from the object. Their method is similar to ours in that it fits a model
using least-squares. However, they use a spherical cap approxima-
tion to the hemispherical shape projection and are unable to handle
deforming objects. [Hegeman et al. 2006] presents an approximate
method for calculating ambient occlusion for trees. Their method
requires no precomputation and runs in real-time, but it relies on
certain properties unique to foliage. Our method is most similar
to the algorithm described in [Kontkanen and Aila 2006]. In this
work, the authors also express ambient occlusion as a function of
pose. The major difference between the two methods is that their
method builds a function over the entire space of character poses. In
contrast, our method learns a multilinear model, where each model
is localized to a different region of pose space. This allows the user
a tradeoff between compression and accuracy, and also scales bet-
ter to large datasets. Furthermore, the pose representation used in
our method is a reduced-dimensional set of handle positions, while
poses in their method are the set of joint angles. As well as being
smaller, our pose representation exists in a uniform space. Finally,
we describe a method for efficiently compressing our representa-
tion of ambient occlusion spatially. This technique clusters vertices
on the mesh into groups with similar ambient occlusion values over
various regions of pose space, then represents ambient occlusion
for all vertices in a group with a single coefficient vector. The ma-
jor advantage of our method is in rendering time. By compressing
our pose representation, we are able to significantly decrease the
amount of work required per vertex, at the cost of a handful of ma-
trix multiplies for each frame rendered.

Several researchers have examined generating real-time illumina-
tion values for dynamic lighting. [Sloan et al. 2002] introduces
precomputed radiance transfer (PRT). This method compresses low
frequency transfer functions using spherical harmonics, and han-
dles a wide range of low-frequency phenomena. [Ng et al. 2004]
presents triple product wavelet integrals to model light transport
functions. These wavelet integrals handle all frequencies, and al-
low the user to change light and viewing directions. However,
these methods only apply to static scenes. Recently, [Sloan et al.
2005] extends PRT to work with locally deforming geometry. Us-
ing this technique, changes to the mesh in the local region of the
vertex being shaded will change the shading, but distant changes to
the mesh are unable to influence shading. While our method does
not compress a function as complicated as the transfer function, it
is designed to handle changes in ambient occlusion due to large-
scale changes in the mesh. [Ren et al. 2006] describes a method
for computing soft shadows in real-time for dynamic scenes. Their
method approximates geometry with sets of spheres, then repre-
sents the low-frequency visibility functions at various points using
spherical harmonics. These visibility functions are then combined
using spherical harmonic exponentiation.

Our work has similarities to the techniques used in [James and Fa-
tahalian 2003] and [James and Twigg 2005]. These methods store
illumination data at various points in state space, then compress this
data using principal component analysis (PCA). To evaluate shad-
ing at a point in state space, they interpolate between nearby illu-
mination points. Rather than using PCA to compress illumination
data, our method uses PCA to find a lower-dimensional subspace
in which to represent poses. Within each of the low-dimensional
pose subspaces, our method then builds a function that expresses
ambient occlusion in terms of pose. This provides a means to min-
imize variance within local regions of state space. By minimizing
variance within a pose subspace, we are able to accurately represent
ambient occlusion using fewer subspaces. Of course, we have the
additional problem of moving between pose subspaces, but moving
least squares [Levin 1998][Shen et al. 2004] smoothes any discon-
tinuities.

Our method builds local subspaces of pose data to efficiently com-

Figure 2: The ambient occlusion computed with our method is ap-
plied to a colored material.

press ambient occlusion data. Several other researchers have used
local subspaces of pose data to accomplish different goals. In par-
ticular, [Chai and Hodgins 2005] learn a low-dimensional space for
control signals derived from video. The subspace is determined at
query time. Due to the amount of raw data, we define local sub-
spaces during preprocessing. Similarly, [Arikan 2006] defines mo-
tion subspaces in order to compress the motion data itself. Velocity
information is used in both of these methods to define local sub-
spaces. While our method has a similar notion of subspaces, they
are defined using only position data. This is because illumination is
strictly a function of position.

3 Methods

Our method computes ambient occlusion values in real-time on dy-
namic character skins. Character skins have the property that they
are controlled by a low number of parameters, namely joint angles
(one popular method for controlling character skins is linear blend
skinning). This parameterization distinguishes character skins from
general deforming meshes. While the skin changes significantly
between poses, it does so in a well-defined parameter space. Fur-
thermore, ambient occlusion on the mesh is a function of triangle
position. Triangle position, in turn, is a function of joint angles.
Therefore, it is reasonable to express ambient occlusion at a point
as a function of joint angles. Joint angles, however, do not pro-
vide a uniform space in which to compare poses. For example, a
small change in the character’s root orientation can produce a large
change in the position of the character’s hand. Instead of joint an-
gles, we represent poses with handle positions. We place a handle
at the joint positions, plus a single handle per bone that is offset
from the bone axis, see Figure 4. This defines a coordinate frame
for each bone, and fully specifies the position and orientation of the

Figure 3: Comparison of ground truth and results produced with
our method. On the left is the ground truth data. The uncompressed
ambient occlusion values for the entire dataset of 4130 frames is ap-
proximately 592MB. In the middle is the result of our method. This
image was produced using 10 clusters and 15 dimensions per clus-
ter, with no spatial clustering. Our representation is approximately
23MB. On the right is the magnified error. Each vertex is shaded
by the scaled absolute value of the difference between ground truth
and our method. The values are scaled by 10.

bone in space. The handle representation is a more uniform space
than joint angles for representing pose [Arikan 2006]. In this paper
we define pose to be the vector of handle positions at a frame of
motion data.

We take a data-driven approach to compressing ambient occlusion
values for character skins. Given a set of ambient occlusion values
and the corresponding poses, our method builds a set of linear func-
tions that express ambient occlusion at a point in terms of pose. Our
training data consists of ambient occlusion values at the vertices of
the skin, for a set of poses taken from a motion capture database.

3.1 Function Approximation

Our method specifies ambient occlusion at a point on the mesh as a
function of pose. Ambient occlusion can change nonlinearly over a
wide range of poses. However, a key observation is that ambient oc-
clusion at a point on the mesh changes smoothly for small changes
in pose. Therefore, if we decompose ambient occlusion over the set
of poses, we can model this function linearly. Our method builds
several linear functions, each one local to a different region of pose
space. This is beneficial because linear functions change smoothly,
are fast to compute, and are easy to implement in a hardware shader.

The domain of each locally linear approximation is a set of
poses that are close together. Because ambient occlusion changes
smoothly as pose changes, it follows that poses close together
should have similar ambient occlusion values. This observation is
the basis of our method. In fact, our method assumes that ambient
occlusion and pose are linearly related, at least within local regions.
We use clustering techniques to find these local regions. Because
pose and ambient occlusion are strongly related, we can cluster on
either of these features. The vector of ambient occlusion values at
a particular frame is very large, however the vector of handle po-
sitions is relatively small. Therefore, for computational efficiency,
we only consider pose when defining the domain of each locally
linear approximation. Our method uses k-means clustering on the

poses in our training set to define these clusters in pose space.

Within a pose cluster, all the poses are relatively close together. Fur-
thermore, representing pose using handle positions (which define a
coordinate frame at each bone) encodes redundant information. Our
method uses PCA to reduce the dimensionality of the pose vector,
which provides significant memory savings by taking advantage of
this proximity and redundancy. More specifically, for each pose
cluster we compute and store the mean pose. We then compute the
n largest principal component vectors, where 7 is a parameter to our
system. We project each of our poses into the subspace represented
by these n principal component vectors. This process results in a
pose vector with much lower dimensionality. Our method specifies
ambient occlusion at a point as a linear function of these reduced
dimension pose vectors. For information on how clustering and di-
mension reduction affect the resulting function, see Table 1.

In addition to building different functions for each pose cluster, our
method also builds different functions for separate spatial regions.
This is because there is a nonlinear relationship between the am-
bient occlusion values at different points on the mesh for the same
pose. Therefore, our method builds a linear function relating re-
duced dimension pose to ambient occlusion for each skin vertex in
each pose cluster. If there are m pose clusters and n vertices, this
results in mn functions. While this may seem prohibitive, note that
each of these functions has a small number of coefficients (equal to
the size of the reduced dimension pose). Section 3.2 will discuss
additional compression of these vectors.

Fitting the linear function is done by minimizing the least-squares
error, using a pseudo-inverse. Let ¢; be the mean ambient occlu-
sion value for vertex i across all frames in the training set. Let
1...k...K be the index of the K poses in pose cluster j. Note that
there is no notion of temporal ordering, the poses can be ordered
in any arbitrary way. Let i and h; be the kth pose and mean pose
of cluster j, respectively. Let ¢; ; be the ambient occlusion value at
vertex i for pose k, and P; be the matrix that projects the pose vec-
tor onto the reduced principal components. The linear coefficient
vector x; j is computed using the pseudo-inverse of the matrix of
projected poses, as such:

(Pj(h1 —hj)T

0i1 — 0
: = : Xi,j (D

(Pj(hx —hj))"

¢i.,K._ o;

Figure 4: Pose handles for the left arm are shown as blue circles.

Figure 5: The blue patch on the shoulder shows a sample vertex
cluster. This is one of 5000 clusters. The vertices in this cluster
have similar ambient occlusion values over the pose cluster from
which this frame was taken. Rather than storing a coefficient vector
for each vertex, our method stores a single coefficient vector for the
vertex cluster.

3.2 Spatial Compression

Our method can optionally perform spatial compression on the co-
efficient vectors x; ;. In the limit, as described above, a coefficient
vector is stored for every vertex in every pose cluster. However,
there is significant redundancy in these coefficient vectors. The am-
bient occlusion at vertices in a local neighborhood tends to change
similarly with changes in pose. Therefore, we can group these ver-
tices together and store a single coefficient vector for the group.
Note that our method computes pose clusters first, then the optional
vertex clusters. This allows a different spatial compression within
each pose cluster.

We use a clustering procedure to find groups of vertices that have
similar mean-subtracted ambient occlusion values for a given pose
cluster. The feature vector for a vertex is composed of its mean sub-
tracted ambient occlusion values for each pose in the pose cluster.
We expect there to be many clusters of vertices (see Table 1 for de-
tails). This is because we are searching for groups of vertices that
have similar ambient occlusion values across the entire pose cluster.
We found that, due to the large number of clusters, using k-means
to cluster vertices is unstable and computationally expensive. In-
stead, our method uses a greedy, hierarchical clustering technique.
To begin, all vertices are placed in the same vertex cluster. The ver-
tex cluster center is computed, and the vertex that is farthest from
the center becomes its own cluster. Then the vertices are reassigned
to the nearer of the two clusters based on distance to the cluster
center. This process is recursively applied to each of the new vertex
clusters until the greatest distance between a vertex and its cluster
center falls below a threshold, or the maximum number of vertex
clusters are created.

At this point, rather than finding a coefficient vector for each vertex
as in Section 3.1, our method computes a single coefficient vector
for each vertex cluster. This is done by solving for the best fit vec-
tor for all vertices in a spatial cluster simultaneously. Let vy...v;
be the mean subtracted ambient occlusion vectors for all / vertices
in spatial cluster i and pose cluster j. Each of these vectors corre-
sponds to the vector in the left hand side of Equation 1. Let Q; be

the reduced-dimensional mean subtracted pose vectors for all poses
in pose cluster j. This matrix corresponds to the matrix on the right
hand side of Equation 1. To solve for the coefficient vector x; ; for
spatial cluster i and pose cluster j, solve

V1 0Q;
o= |y 2)
Vi Q;

For each vertex in each pose cluster, it is necessary to store identi-
fication information regarding in which vertex cluster that vertex is
a member. Because this is a greedy algorithm, it is non-optimal. It
is possible another clustering algorithm could obtain better results.
The main benefits of this method include speed and its deterministic
nature.

3.3 Function Evaluation

Section 3.1 describes a method to specify ambient occlusion as a
set of linear functions described over pose subspaces. Evaluating
at a specific vertex for a specific pose is a linear operation. To
determine which subspace the query pose & belongs to, simply find
the pose cluster center to which # is closest. Let subspace j be the
nearest subspace to 4. Within subspace j, the reconstructed ambient
occlusion value ¢; at vertex i and pose is

¢i =i+ (h—hy) Pl x; 3)

where ¢; is the mean ambient occlusion value across all poses in
the training data for vertex i, h; is the cluster center for cluster j,
Pj is the matrix that projects the pose into the reduced dimension
pose space j, and x; ; is the coefficient vector computed in Equation
1. If spatial compression (Section 3.2) is used, then x; ; refers to
the coefficient vector for vertex cluster i and pose cluster j. When
calculating the ambient occlusion at a specific vertex, it is necessary
to lookup the coefficient vector for the vertex cluster in which the
specific vertex is a member.

However, when computing ambient occlusion for a motion se-
quence, the character will transition between several subspaces
through the course of the motion. Our method uses moving least
squares [Levin 1998] [Shen et al. 2004] to eliminate discontinuities
in ambient occlusion values as the character moves between these
subspaces. Using this technique, ambient occlusion is the weighted
sum of the ambient occlusion values computed in each pose sub-
space:

¢i=6i+Y o(h, j)(h—hj) Pl x; “)
J
where the blend function o is defined to be
N
[|2—hjI3

1)

A=A

o(h, j) =

o is a dataset dependent scalar that controls the falloff of the blend
function.

Figure 6: Example of ambient occlusion function generalization.
On the left is ground truth for a running motion. In the middle is
the output of our method. Our method was trained on walking and
skipping motions, but not running. On the right is the magnified
error. Each vertex is shaded by the scaled absolute value of the
difference between ground truth and our method. The values are
scaled by 5.

Regarding efficiency, note that the matrix multiplication in Equa-
tion 4 is done once per cluster. While we need to evaluate this equa-
tion for each vertex i, we can precompute and store (i — h_,-)TPj for
each pose cluster j with a non-zero blend function, then reuse it for
all vertices. This leaves only a low-dimensional dot product to the
per vertex operations. This dot product can easily be implemented
in a hardware shader.

4 Results

Our dataset consists of 4130 frames of motion capture data, con-
taining walking, running, skipping, reaching, and crouching mo-
tions. The most computationally expensive part of our method was
rendering ambient occlusion values. To render, our method sam-
pled the hemisphere at each vertex in each frame using 500 rays.
The ambient occlusion at these poses was computed and stored over
the course of several days. Once the ambient occlusion values had
been calculated, we experimented with several values of our param-
eters. Each experiment took approximately 15 to 20 minutes. The
uncompressed ambient occlusion values for the entire set is approx-
imately 592 megabytes in size. This is approximately 0.14MB per
frame, which corresponds to storing one floating point number for
each vertex. Our method easily compresses this to less than 40
megabytes. Table 1 summarizes effects due to changes in the num-
ber of spatial clusters per pose cluster, for a set number of pose
clusters and reduced dimensions. Ambient occlusion is defined to
be a number between zero and one. In general, note that the mean
error is quite low even with a function representation less than five
megabytes in size. Furthermore, the error decreases as the number
of pose clusters, number of dimensions, and number of spatial clus-
ters increase. For further evaluation, please see the accompanying
video, which was rendered using an ATI Radeon 800GT.

5 Discussion

Our method has four parameters: the number of clusters, the dimen-
sionality of each cluster, the number of spatial cluster vectors per
pose cluster, and the moving least squares blend parameter. For in-
formation on the first three, see Table 1. The moving least squares
blend parameter (¢ in Equation 5) should be chosen such that a

Pose Reduced Vertex Mean | Size
Clusters | Dimensions Clusters Error | (MB)
Uncompressed | 0.011 4.5
5 5 10000 0.011 2.0
5000 0.011 1.5
1000 0.012 1.0
Uncompressed | 0.008 8.1
5 10 10000 0.008 3.0
5000 0.008 2.0
1000 0.009 1.1
Uncompressed | 0.007 | 11.6
5 15 10000 0.007 4.0
5000 0.007 2.5
1000 0.009 1.2
Uncompressed | 0.008 8.8
10 5 10000 0.008 39
5000 0.008 2.8
1000 0.009 1.9
Uncompressed | 0.006 | 16.0
10 10 10000 0.007 5.9
5000 0.007 38
1000 0.008 2.1
Uncompressed | 0.005 | 23.2
10 15 10000 0.005 7.8
5000 0.006 | 4.8
1000 0.007 2.3
Uncompressed | 0.008 | 13.1
15 5 10000 0.008 5.8
5000 0.008 4.1
1000 0.008 2.7
Uncompressed | 0.006 | 23.9
15 10 10000 0.006 8.7
5000 0.006 | 5.6
1000 0.007 3.1
Uncompressed | 0.005 | 34.7
15 15 10000 0.005 | 11.6
5000 0.005 7.1
1000 0.007 34

Table 1: Comparison of error and compression based on different
parameters. There are 4130 frames in this dataset, composed of
walking, running, skipping, reaching, and crouching motions. Error
measures are error in the absolute value of ambient occlusion per
vertex. For comparison, the method of Kontkanen and Aila results
in a size of 10.4MB with a mean error of 0.006.

given pose has significant contribution from at most a handful of
pose clusters. In our implementation, we set ¢ to ten. The optimal
value of o will change based on the dataset and should be cho-
sen experimentally. However, because we have defined our pose as
handle positions, we expect that handle positions across different
characters will remain relatively similar.

Our implementation samples and evaluates points only at the ver-
tices of the mesh. These values are interpolated across the mesh
faces using the standard graphics driver calls. This works well for
our examples because the character is finely tessellated (approxi-
mately 67,000 triangles). However, the algorithm does not require
that sample points be at the vertices. If a surface parameterization
is available, sample points can be located anywhere on the mesh.
In such a case, when evaluating the function at a specific pose the
method can write to a texture map. The method can then use a frag-
ment shader that reads from this texture map to shade the character.

This paper presents a method for approximating the changes in am-
bient occlusion due to the motions of the character. Changes in

ambient occlusion can also be caused by the environment. If envi-
ronmental effects are static, such as the change in ambient occlu-
sion due to a ground plane, they can be taken into account when
generating data. The examples in this paper were created using
a ground plane. In general, though, environmental effects are not
static. However, they also tend to be less important, mainly due
to the fact that objects must be relatively close to the character to
have a noticeable effect on illumination. Some recent work handles
local and non-local effects with different methods, to exploit this
fact [Arikan et al. 2005]. The scope of this paper is to handle the
changes due to a character’s motion, because these tend to be the
most apparent. To handle non-static objects, our method should be
paired with an algorithm to handle the subtle effects due to the en-
vironment. Furthermore, if the effects due to the environment have
a low-dimensional parameterization, it may be possible to extend
our work to handle those effects.

Our data-driven method is used to build a function for ambient oc-
clusion, which is a complicated function of pose. Accordingly, if
the parameters to our approximation are picked poorly, this will re-
sult in the failure of our multilinear model. If too few pose clusters
are used, or if each pose cluster is projected to too few dimensions,
the character skin will develop dark and light blotchy patches. Sim-
ilar patches appear when rendering a pose that is very dissimilar to
those in the training set. The failure mode when using too few spa-
tial clusters is more graceful. The character appears to have large
regions of constant color, similar to rendering with a reduced color
palette. The solution to each of these failure cases is to add pose
clusters, project to a higher number of dimensions, add more poses
to the training set, or add more vertex clusters, respectively.

Our method is designed to scale well with large datasets. For each
pose cluster, we require a mapping from vertices to spatial clusters,
and a coefficient vector for each spatial cluster. Our experiments
suggest a high degree of compression is available within a pose
cluster. As the size of the training set grows, more pose clusters
may be required if different motions are added. However, as we
add more data, we expect that the coherence within each pose clus-
ter will increase. Therefore, we expect to get better compression
with a larger dataset. In terms of rendering, our method requires
a small number of matrix multiplies to project the given pose to
each pose cluster space. Within each space, our method performs
a low-dimensional dot product per vertex cluster. Therefore, as the
complexity of the character increases (i.e. more joints), this will
only affect the size of the reduced-dimensional projection matri-
ces. Increasing the number of vertices in the character skin will add
more complexity only if more vertex clusters are required, then it
only adds a coefficient vector per vertex cluster.

An attractive feature of our method is its ability to generate ambi-
ent occlusion values for poses not used in the training set, provided
these poses are close to those in the training set. We obtained good
results when training on approximately one third of the frames in
our database. These frames were randomly selected across the set.
Furthermore, we were able to generalize the result to different cat-
egories of motion. For example, we trained our system on walk-
ing and skipping motions, and were able to obtain visually plausi-
ble ambient occlusion values when testing on running motion. For
evaluation, please see Figure 6 as well as the accompanying video.

Acknowledgments

We would like to thank the Berkeley Graphics Group and the
anonymous reviewers for their valuable input. Motion capture data
was donated by the Sony Computer Entertainment America Motion
Capture Department.

References

ARIKAN, O., FORSYTH, D. A., AND O’BRIEN, J. F. 2005. Fast
and detailed approximate global illumination by irradiance de-
composition. In Proceedings of ACM SIGGRAPH 2005, ACM
Press.

ARIKAN, O. 2006. Compression of motion capture databases. In
Proceedings of ACM SIGGRAPH 2006, ACM Press.

BUNNELL, M. 2005. Dynamic Ambient Occlusion and Indirect
Lighting. Addison-Wesley Professional, ch. 14.

CHAI, J., AND HODGINS, J. K. 2005. Performance animation
from low-dimensional control signals. ACM Transactions on
Graphics (SIGGRAPH 2005) 24, 3 (August).

CHRISTENSEN, P. H. 2002. Note #35: Ambient occlusion, image-
based illumination, and global illumination. PhotoRealistic Ren-
derMan Application Notes.

HEGEMAN, K., PREMOZE, S., ASHIKHMIN, M., AND DRET-
TAKIS, G. 2006. Approximate ambient occlusion for trees. In
SI3D ’06: Proceedings of the 2006 symposium on Interactive 3D
graphics and games, ACM Press, New York, NY, USA, 87-92.

JAMES, D. L., AND FATAHALIAN, K. 2003. Precomputing in-
teractive dynamic deformable scenes. ACM Transactions on
Graphics (SIGGRAPH 2003) 22, 3 (July), 879-887.

JAMES, D. L., AND TWIGG, C. D. 2005. Skinning mesh anima-
tions. ACM Transactions on Graphics (SIGGRAPH 2005).

KONTKANEN, J., AND AILA, T. 2006. Ambient occlusion for ani-
mated characters. In Rendering Techniques 2006 (Eurographics
Symposium on Rendering), T. A.-M. Wolfgang Heidrich, Ed.,
Eurographics.

KONTKANEN, J., AND LAINE, S. 2005. Ambient occlusion fields.
In Proceedings of ACM SIGGRAPH 2005 Symposium on Inter-
active 3D Graphics and Games, ACM Press, 41-48.

LANDIS, H. 2002. Renderman in production. ACM SIGGRAPH
2002 Course 16.

LEVIN, D. 1998. The approximation power of moving least-
squares. Mathematics of Computation 67,224, 1517-1531.

NG, R., RAMAMOORTHI, R., AND HANRAHAN, P. 2004. Triple
product wavelet integrals for all-frequency relighting. In Pro-
ceedings of ACM SIGGRAPH 2004, ACM Press.

REN, Z., WANG, R., SNYDER, J., ZHOU, K., L1U, X., SUN, B,
SLOAN, P.-P., BAO, H., PENG, Q., AND GUO, B. 2006. Real-
time soft shadows in dynamic scenes using spherical harmonic
exponentiation. In Proceedings of ACM SIGGRAPH 2006, ACM
Press.

SATTLER, M., SARLETTE, R., ZACHMANN, G., AND KLEIN,
R. 2004. Hardware-accelerated ambient occlusion computation.
In Vision, Modeling, and Visualization 2004, Akademische Ver-
lagsgesellschaft Aka GmbH, Berlin, B. Girod, M. Magnor, and
H.-P. Seidel, Eds., 331-338.

SHEN, C., O’BRIEN, J. F., AND SHEWCHUK, J. R. 2004. Inter-
polating and approximating implicit surfaces from polygon soup.
In Proceedings of ACM SIGGRAPH 2004, ACM Press, 896-904.

SLOAN, P.-P., KAUTZ, J., AND SNYDER, J. 2002. Precom-
puted radiance transfer for real-time rendering in dynamic, low-
frequency lighting environments. In Proceedings of ACM SIG-
GRAPH 2002, ACM Press.

SLOAN, P.-P., LUNA, B., AND SNYDER, J. 2005. Local, de-
formable precomputed radiance transfer. In Proceedings of ACM
SIGGRAPH 2005, ACM Press.

