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Abstract

In this paper we present an algorithm for automatically
estimating a subject’s skeletal structure from optical mo-
tion capture data. Our algorithm consists of a series of
steps that cluster markers into segment groups, determine
the topological connectivity between these groups, and lo-
cate the positions of their connecting joints. Our problem
formulation makes use of fundamental distance constraints
that must hold for markers attached to an articulated struc-
ture, and we solve the resulting systems using a combination
of spectral clustering and nonlinear optimization. We have
tested our algorithms using data from both passive and ac-
tive optical motion capture devices. Our results show that
the system works reliably even with as few as one or two
markers on each segment. For data recorded from human
subjects, the system determines the correct topology and
qualitatively accurate structure. Tests with a mechanical
calibration linkage demonstrate errors for inferred segment
lengths on average of only two percent. We discuss appli-
cations of our methods for commercial human figure ani-
mation, and for identifying human or animal subjects based
on their motion independent of marker placement or feature
selection.

1 Introduction

The term motion capture broadly refers to any of several
techniques for recording the movements of a human, ani-
mal, or other subject, and then using the recorded data for
animating synthetic characters. Motion capture techniques
have found widespread commercial use in the movie, tele-
vision, and video game industries, as well as in other areas
ranging from biomechanics studies to performance art.

Currently, the most commonly used motion capture tech-
niques employ optical methods to record a subject’s motion.
A set of markers are attached to the subject and then ob-
served by a number of cameras. The capture system infers
the time-varying location in space of each marker by trian-
gulation based on the projection of the marker onto each
camera’s image plane. High-end systems typically employ
aredundant array of many cameras to minimize marker loss
due to occlusions and to provide accuracy over large cap-
ture volumes. To facilitate the task of segmenting markers
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Automatic skeletal reconstruction for a human sub-

Figure 1.
ject captured with active markers: The image on the left shows a
photograph of the subject during the capture session. The image
on the right shows the reported marker positions corresponding
to when the picture was taken along with the kinematic skeleton
automatically constructed by our system.

from background, the systems use one of two methods for
increasing marker contrast. The more common passive sys-
tems work with markers made of a strongly retro-reflective
material and an illumination source co-located with each
camera. Active systems, such as the one shown in the left-
hand side of Figure 1, use LED markers that pulse in sync
with the cameras’ digital shutters. In both types of system,
the cameras are fitted with optical filters tuned to the wave-
length of the illumination source or LEDs. One significant
difference between the systems is that the active markers
can communicate unique identifications by modulating their
pulses, whereas passive systems must infer marker identity
from continuous observation. In practice, both types of op-
tical system can reliably generate accurate position data for
the markers with only occasional gaps caused by occlusions
or the subject exiting the capture region.

Motion capture systems output a set of point locations
over time. This format does not explicitly capture the over-
all structure of the subject being captured. Fitting an ar-
ticulated model, or skeleton, to the data uses the skeleton’s
structure to simplify the representation of the motion. This
type of model facilitates recognizing the nature of a motion
being performed as well as the identity of the subject. Pa-



rameterizing the data with such a model also makes motion
editing and visualization more convenient.

This paper describes an automatic method for inferring a
kinematic model of the recorded subject directly from either
passive or active optical motion capture data. Our method
works solely from the marker trajectories and does not re-
quire any user intervention, nor does it require that the sub-
ject assume any particular pose. Our method does assume
that the subject’s kinematics can be well approximated by
an articulated skeleton, but makes no other assumptions
about the topology or structure of that skeleton. Instead the
method automatically infers an appropriate skeletal topol-
ogy and structure from the motion of the markers.

We rely on the key fact that, in an articulated structure,
points fixed relative to one of the rigid segments in the struc-
ture will maintain a constant distance from other points on
that same segment and from the centers of the joints con-
necting the segment to the rest of the articulated structure.
Provided that the subject exercises each joint, and that one
of the segments attached by the joint have at least two mark-
ers and the other at least one marker, these constant-distance
requirements supply enough constraints to uniquely fix the
location of the joint center.

Unlike prior approaches, our method does not operate by
first finding transformations between the coordinate frames
of each skeletal segment. Because there is no need to esti-
mate those transformations, our method works with as few
as one or two markers on each segment. Additionally, our
algorithms do not inherit the instability of estimating rota-
tions from a small number of closely grouped points.

The output produced by the method consists of an as-
signment of each marker to one of the segments in the kine-
matic model, the topological connectivity between the seg-
ments, the locations of the rotational joints connecting the
segments, and the locations of each marker in its segment’s
reference frame. An example of the skeleton constructed
for a human subject appears on the right in Figure 1.

This information can serve a number of practical uses.
The most obvious application is motion capture for anima-
tion where it can replace the current, largely manual, cal-
ibration procedures used with most systems. Because the
subject does not need to assume any special pose for our
process to work, it can also be used in situations where sys-
tems that require special poses would be impractical.

In addition to animation uses, it applies to segmenta-
tion and to recognition as well. Point reconstructions could
come from motion capture equipment, but they could also
come from structure-from-motion procedures. Several pa-
pers have demonstrated methods for segmenting motions of
distinct rigid bodies from image observations, and then re-
constructing the points on the bodies separately (see, for
example, [2,4,14,15]). Structure from motion produces un-
structured point clouds in 3D, which are often then formed
into meshes which produce 3D models (e.g. [5]). Such mod-
els are useful for rendering, but can be difficult to match for

783

recognition purposes. For example, it would be extremely
difficult to match clouds of points lying on the surface of
a person to a model of the individual, because the samples
may be taken at different points on the example and on the
model. Given points that are derived from an appropriate
structure (a kinematic tree), our method can be used to: (a)
determine which such points form a kinematic tree, where
the rigid bodies are connected by rotational joints; (b) ob-
tain a skeleton representation of the tree, suitable for match-
ing to object descriptions. As evidenced by the data plotted
in Figure 5, this structure should considerably simplify ob-
ject matching.

We have tested our method using data from a variety of
optical motion capture sources, both active and passive. For
human subjects, the results show that a qualitatively good
skeleton can be constructed reliably without imposing sub-
stantial constraints on the recorded motion. Inferred skele-
tons for a single subject have low variance with regard to
geometry and topology. Quantitative results obtained for a
mechanical linkage show that the estimated skeletal param-
eters accurately reflect those of the recorded subject.

2 Previous Work

The task of determining an appropriate articulated skele-
ton for some recorded motion data is a specific instance
of the general problem of fitting a generative model to
observed data. Numerous researchers in several different
fields have studied variations of this problem, and as dis-
cussed in Section 3 we have borrowed several well studied
techniques to address our particular goal.

Several computer graphics researchers have examined
this specific problem of skeletal parameter estimation for
various types of motion capture data. O’Brien and his col-
leagues [9] devised an algorithm to estimate skeletons from
magnetic motion capture data. Because magnetic systems
include both position and orientation information, those au-
thors are able to set up a linear system with the joint loca-
tion for a given pair of bodies as the unknowns and where
each frame of motion contributes a set of constraints. The
residual of the least-squares solution to that system can be
used to determine whether of not two bodies are in fact
connected by a joint, which in turn allows them to infer
both an appropriate skeleton topology and joint locations.
Our method follows their general approach, however be-
cause optical systems cannot measure marker orientation,
we end up with substantially different, non-linear system
constraints that require different solution methods.

Other researchers have worked on skeleton fitting tech-
niques for use with optical motion capture data. Silaghi and
colleagues [12] describe a partially automatic method for
inferring skeletons from motion. They solve for joint posi-
tions by finding the center of rotation in the inboard frame
for markers on the outboard segment of each joint. This
process requires at least three markers on each segment in
order to estimate reference frames for each of the inboard
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Figure 2. These images show marker configurations typical of

the data from an optical motion capture system. Each image cor-
responds to one frame for one of our human subjects.

bodies. Their system requires substantial user interaction
and also suffers from errors introduced by unreliable seg-
ment transformation estimates.

The method of Ringer and Lasenby [10], like ours, works
with distance constraints although they still rely on rota-
tion estimates. They assume that the skeletal topology is
known beforehand and use heuristics to test multiple possi-
ble marker assignments.

Similar problems have also been studied in the biome-
chanics and robotics literatures. A few specific examples of
methods for inferring information about a human subject’s
skeletal anatomy from the motions of bone or skin mounted
markers can be found in [1, 13, 16]. Karan and Vukobra-
tovi¢ have published a survey of calibration by parameter
estimation for robotic devices [7].

3 Methods

Our skeleton inference procedure contains three stages.
During the first stage, our method groups together markers
that roughly move as a single rigid body. We refer to these
groups as marker groups. The second stage determines the
topology and joint positions of the skeleton by solving for
the location of a rotational joint between all pairs of marker
groups and selecting only the joints with low fit residuals.
This fit process produces a “noisy” skeleton, meaning that
the joints connected to a single segment may translate with
respect to each other. To correct, we have an optional third
stage that performs a least squares fit to find the single opti-
mal length of each segment and offsets for the markers.

The input obtained from an optical motion capture sys-
tem consists of the three-dimensional position for each
marker over time. (Figure 2 shows typical examples.) The
marker positions are given at discrete points in time called
frames. Not all marker positions are reported for every
frame: occlusions and other factors can cause the motion
capture system to lose track of a marker for some time pe-
riod, creating gaps. The data for a given marker typically
contains large errors just before the system loses track of
that marker and for a short period after the marker is re-
discovered. To eliminate problems with “ghost” markers
and erroneous position data during those periods, the first
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few frames are trimmed off the beginning and end of each
marker’s data segment, and any marker with a maximum
number of consecutive frames less than one half second is
ignored. For active systems, a marker’s identity is consis-
tent across gaps, but a passive system cannot tell a previ-
ously unseen marker from the reappearance of an old one.
As a result, passive system will very frequently generate
multiple marker identities for a single physical marker. For
now, we assume that marker identities are constant, but we
later discuss how to merge different marker identities in
Section 4.

3.1 Marker Segmentation

The first step of our method clusters markers into groups
that represent body segments. These are the rigid compo-
nents of the resulting skeleton. For instance, given an ap-
propriate input motion of a human arm, our algorithm will
segment the data into two sets, one representing the upper
arm and the other the lower arm. This grouping occurs be-
cause the motion of upper arm markers can be well approxi-
mated with a rigid body transformation, whereas the motion
of a set of markers spanning both the upper and lower arm
cannot be expressed as a rigid body transformation. In an
ideal rigid body, the points on the body do not move with re-
spect to each other over time, and in particular the standard
deviation of distances between points on a rigid body over
time is zero. Therefore, to determine marker groups, our
method clusters based on the standard deviation in distance
over time between all pairs of markers.

Using all frames to compute the standard deviation in
distance between two markers can be expensive and the
computation will be unduly influenced by the sporadic er-
rors in optical motion data where a marker’s position may
jump several inches for short periods. To address the speed
issue, our method calculates this quantity only over a jit-
tered uniform sampling of frames. In our implementation,
these samples are selected over all possible frames at inter-
vals of one half second, plus or minus a few thirtieths of a
second. This jitter ensures that any periodic errors do not
affect the segmentation. In particular, let us define a cost
matrix, A, such that element A;; is the standard deviation
in distance between markers ¢ and j for a particular sam-
pling of frames. This dataset is segmented into n groups
using spectral clustering [8], where n is input by the user!.

We make the process resistant to sporadic jump errors in
the marker positions using a variation of the RANSAC pro-
cedure [3]. Rather than using one sampling of frames, we
find marker groups by clustering multiple times using sev-
eral different samplings. From among these multiple clus-
terings, our algorithm selects the one which minimizes the
sum standard deviation of distances over all marker pairs
in each group, for all clusterings. To avoid penalizing large

I Alternatively, the system’s eigen-gap provides a reasonable way to
determine an appropriate number of groups.



marker groups, the standard deviation within a group is nor-
malized by the number of markers in the group.

3.2 Fitting Skeletons

Given marker groups for each segment in the kinematic
skeleton, our algorithm must also determine the skeleton’s
topology and the locations of the connecting joints. Both
are determined by minimizing the same quantity, called the
joint cost. A joint between two segments in an articulated
skeleton should maintain a constant distance from the mark-
ers in marker groups for both segments. For a set of markers
on two body segments and a joint, we define the joint cost
to be the mean variance in distance between the joint and
each marker.

Given two bodies, the optimal joint position minimizes
the joint cost for connecting them. The optimal skeleton
topology is the one which minimizes the sum of joint costs
over all connected segments. Our strategy for finding the
optimal skeleton is to first find the joint costs for all seg-
ment pairs by solving a nonlinear optimization that finds
the optimal joint position, and then second, to find the op-
timal topology by solving for a minimal spanning tree. To
avoid excessive computational costs we only solve the all-
pairs joint optimization approximately, then once we know
the skeleton topology we solve for just those joints more
accurately.

As stated above, we define the cost of placing a joint
between two marker groups, b, and by, to be the mean vari-
ance in distance between each marker and the joint posi-
tion at each frame. Because the position of the joint is
not known, our method optimizes to find the position that
minimizes this cost. Unfortunately, the trivial solution to
this minimization is to place the joint infinitely far away,
making the variance in the distance between the joint and
each marker zero. To keep the joint close to the marker
groups a small distance penalty is added to the cost func-
tion. If we denote the location of a marker at a given
frame as my and the location of a joint at that frame as
cy, then the average distance between a marker and a joint
is d(c,m) = Zf: ey — my||, where |m]| is the number

of frames in which marker m appears. The variance in dis-
tance is then o(c, m) = ITlnl S>(lleg —my|| — d)?. The joint
f

cost is then
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where « is a small coefficient weighting the average dis-
tance penalty and |b,| is the number of markers in group
a. This formula averages only over the number of frames
that each marker appears in to avoid sensitivity to dropped
frames. To find the position of a joint at each frame, our al-
gorithm optimizes for ¢ using the nonlinear conjugate gra-
dient method [11]. A solution will be fully determined pro-
vided a and b together contain at least three markers, neither
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a nor b are empty, and that the motion exercises at least two
of the three rotational degrees of freedom at the joint.

To determine the topology of the skeleton, i.e. how the
marker groups are connected, our method uses an approach
similar to that in O’Brien et al. [9]. In this stage, our method
treats marker groups (which represent body segments) as
nodes in a graph, and joints are possible edges. Because
the topology of the skeleton is unknown, any pair of marker
groups could possibly be connected by a rotational joint.
The edge weight between any two nodes is the correspond-
ing joint cost. Therefore, marker groups that should not be
connected, such as the markers on the hand and the foot,
will have a high joint cost. To determine the optimal skele-
ton, our method computes the minimum spanning tree of
this graph.

Theoretically, the marker group segmentation step (Sec-
tion 3.1) could be skipped. Instead of trying to model ro-
tational joints between pairs of marker groups, our method
could try to model rotational joints connecting all possible
groups of markers. However, there would be a combinato-
rial explosion in the number of possible joints, so marker
group segmentation is used to make the problem tractable.

In the discussion above, we assumed that the positions
for all possible joints were found for all frames. The posi-
tions of joints that were not included in the optimal skeleton
were then discarded. Rather than waste computation, our
method drastically subsamples the number of frames given
to the optimization procedure when determining topology.
This procedure slightly affects the residual, however in our
experiments the resulting topology is the same as when the
method uses all frames. Once the topology is known, we
solve the full optimization to find the joint position at all
frames. However, now our method only runs the optimiza-
tion procedure for joints that are known to exist.

When determining topology, a small average length term
was added to the optimization criteria to keep the joints
close to the skeleton. This is because incorrect joints could
have otherwise been assigned a low joint cost by placing
them at infinity. Because there are no incorrect joints in the
second pass, this small average length term can be dropped.
Interestingly, we found that with input motions that do not
fully exercise all degrees of freedom, leaving the length
term in can improve results. This length term amounts to
a prior on the joint position that states the joint is close to
the mean position of the markers in b, and by,

3.3 Fitting Rigid Bodies

Due to noise in the input data, the joint positions found in
Section 3.2 contain noise. Often times it is useful to find a
true rigid body skeleton, both as a means of parameterizing
the data and obtaining an estimate of noise in the input data.
We present a method to project the joint and marker posi-
tions onto a rigid body skeleton. This is done one marker
group at a time. This stage begins by collecting all the
frames in which all the markers in a group appear, i.e. if



a marker in group b, went missing at frame f, that frame
is not used in solving for the projection. Using the method
described by Horn [6], we compute the rigid-body transfor-
mations that best mutually align the marker and joint loca-
tions for that segment. If all the frames are lined up using
their respective transformations, there will appear several
small clouds of points representing each of the markers and
joints connected to the body segment. The average position
of each cloud of points is the model of the true offset of the
marker or joint. These offsets are all defined with respect to
the average position of the markers and joints connected to
each body segment. Because the topology of the skeleton
has already been determined, simply connecting the body
segments based on the offsets from each segment center re-
sults in the correct rigid body skeleton.

As mentioned previously, estimating rotation matrices
from groups of markers suffers from marker noise and re-
quires at least three markers per segment. However, once
a rigid body skeleton is fitted to the data, rotations can be
found using inverse kinematics (IK). Since the rigid body
skeleton and the offset of each marker from the segment
is known, IK finds the rotations that minimize the distance
from the marker position on the segment and the input data.

4 Marker Correspondence

The previous section described how to generate articu-
lated skeletons, however it assumed known correspondence
between markers. When using passive optical motion cap-
ture systems, correspondence information may be incom-
plete. Passive systems use markers that do not relay iden-
tities to the cameras. However, because the systems cap-
ture at fairly high rates, markers often do not move much
between consecutive frames and identities can be tracked
from frame to frame. If the system temporarily loses track
of a marker, it will give the marker a new label, treating it as
if the actor placed a new marker on their body. This means
that, although the actor only wore a certain number of mark-
ers, the system often reports a significantly larger number of
markers in the data. Our algorithm performs better the more
we know about each marker, so it is beneficial to infer these
correspondences.

Our method for determining marker correspondence
over frames is based on the observation that portions of an
actor’s body will often pass through similar configurations
at different times. This means that any particular configu-
ration (minus the global rotation and translation) is likely
to appear at some other frame in the data. The distance
between any two markers in matching poses provides an es-
timate of the log likelihood that those markers are actually
the same.

Our method begins by grouping the data into n sets,
where n is the total number of markers reported by the sys-
tem. In our method, the number of physical markers n’
equals the maximum number of markers appearing in a sin-
gle frame. This assumes preprocessing has eliminated ghost
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markers. In this stage we assume n is greater than n’, oth-
erwise correspondence is already known. The ith set, p;,
consists of all frames in which marker ¢ appears. Again,
each frame contains the position data plus a flag indicating
existence for all markers in that frame. In some sense, set
p; consists of all known correlations between marker ¢ and
all other markers. Note that in most cases any two sets will
have some markers in common. Since we know there are n’
physical markers, we would like to cluster these n sets into
n’ clusters, each of which represents a physical marker. Of
course, clustering requires a measure of distance between
two sets. We define the distance between p; and p;, D;;,
to be the minimum distance between markers ¢ and 7 in all
pairs of poses. Again, a pose is defined to be invariant to
global rotation and translation. To compute this distance
our method takes each pair of frames, one in p; and one in
p;, and determines the rotation and translation that line up
the markers found in both frames. In other words

D

min

Miq — Am;
aCpibED; || i,a J,bH

ij =
where A constitutes the rotation and translation that aligns
frame b with frame a based on the set of markers that ap-
pear in both frames, and m; , is the position of marker ¢
at frame a. Because poses don’t change much in consec-
utive frames, rather than compare every frame our method
samples frames from each set at a constant interval. Once
the samples with the minimum distance between markers
1 and j are found, our method searches all pairs of frames
around those samples for the optimal alignment. This is
done purely for efficiency, and in all of our experiments has
produced the same answer as comparing all pairs of frames.
Now that we have distances between all sets, spectral clus-
tering [8] is used to cluster the virtual markers into ac-
tual markers. Assuming preprocessing has eliminated ghost
markers, if marker ¢ and marker j appear in the same frame
they should not be clustered together. Therefore, if p; and
p; have any frames in common, the clustering algorithm is
biased to prevent those markers being grouped together. As
described in [8], distances are converted to affinities using
a Gaussian distribution. In the case of overlapping sets, the
affinity is set to zero, and a repulsion matrix is used to indi-
cate the sets should not be clustered together [17]. Note that
the method will fail if all markers are lost simultaneously,
for example if the actor steps out of the capture volume.

5 Results

We tested our method on multiple human datasets, how-
ever lack of ground truth measurements? means that eval-
uating performance on this data is difficult. To provide a

2We can measure limb lengths by hand, but accurately determining
joint locations under skin is difficult and error prone. Our tests do show that
the computed limb lengths agree with crude hand measurements to within
two inches, which is consistent with our ability to correctly measure the
joint locations.



Reconstructed skeleton overlaid on video frame. This

Figure 3.
figure allows rough visual assessment showing that the correct
topology has been recovered and that joint locations are approx-
imately correct.

quantitative analysis of our method’s performance, we con-
structed a three-link chain of aluminum rods connected by
universal joints, pictured in Figure 4. We captured this
model using a PhaseSpace active capture system and were
able to reconstruct the length of the middle rod to a mean
length of 34.31 centimeters (0.21 centimeters too long) with
standard deviation 0.65 centimeters. The average error per
trial was 0.58 centimeters with a standard deviation of 0.32
centimeters. These values are within the accuracy limits of
the motion capture system. See Table 1 for complete results.

We reconstructed human skeletons using data sets gath-
ered from both a PhaseSpace active motion capture system
and from a Vicon passive motion capture system. The re-
sults are visually plausible, as seen in Figure 1 and Figure 3.
In these experiments we had several subjects, both male and
female. Between thirty to forty markers were placed on the
subjects in various configurations. These markers were po-
sitioned on the body such that they were able to capture
the rigid motions of a particular body segment. In particu-
lar, markers on the back could not be placed on the shoul-
der blades, due to the translational motion in the shoulder
joint. Each subject then performed a calibration motion in
which they exercise each joint through the full range of mo-
tion. This type of motion produced the best reconstructions.
We also reconstructed skeletons from more typical motions,
such as walking or dancing. Often times we were unable to
segment out the hands in walking motion, due to the lack of
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’ Trial \ Result (cm) \ Error (cm) \ Error (%) ‘

1 34.29 0.19 0.6
2 33.35 -0.75 2.2
3 33.72 -0.38 1.1
4 33.60 -0.50 1.5
5 34.49 0.39 1.2
6 35.39 1.29 3.8
7 34.64 0.54 1.6
8 34.80 0.40 1.2
9 34.54 0.44 1.3

Table 1. Reconstructed length for middle segment in aluminum
rod linkage, actual length 34.1 cm

Figure 4. Aluminum rod linkage connected with universal joints,
tracked using nine active markers

movement in the wrist degrees of freedom. In these cases,
we found that we could append a calibration motion of the
same actor, allowing us to reconstruct the position of the
wrists in the walking motion.

The accompanying video shows motion clips from two
different subjects. The first clip was obtained on the Phas-
eSpace active system, the second on the Vicon passive sys-
tem. In both cases, we ran computations on the raw marker
data. For the data from the active system, the skeletal re-
construction appears to correspond well to video of the sub-
ject despite noise in the form of jitter and occasional jumps
in the marker positions. Lighting conditions with the pas-
sive system precluded recording a comparison video, but
visual inspection shows that the reconstructed skeleton has
the proper topology and appropriate proportions. That data
is slightly cleaner so that the motion of the skeleton ex-
hibits less jitter, except near the end when the motion cap-
ture system completely loses track of the subjects lower-left
arm. However, that missing data does not prevent our sys-
tem from reconstructing the skeleton, which allows the in-
verse kinematics routine to do a plausible job of filling in
the missing data.

To illustrate the ability of our method to identify sub-
jects, we compared segment lengths from the reconstructed
skeletons of four different subjects. The motions used as
input to this experiment were either calibration or dance
motions, both of which exercise all major joints of the
body. The reconstructed skeletons all had the same topol-
ogy, namely that shown in Figure 1 and Figure 3, which
allows a direct comparison of geometry. In Figure 5 the re-
constructed lengths of the back (hips to neck) and upper arm
(shoulder to elbow) segments are compared for several sub-
jects. Note that the samples for each subject do not overlap
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Figure 5. Plot of reconstructed back length versus mean recon-

structed upper arm length for different subjects: This example
illustrates the ability of our method to recognize subjects based
on reconstructed skeletons. Similar plots result using other body
parts.

and tend to group together. A subject’s proportions could
possibly be used to help distinguish between individuals.

6 Summary

This paper described an automatic method for estimat-
ing skeletal parameters from noisy point data. Our method
is able to determine the overall topology of the motion cap-
ture subject, the length of each segment in the skeleton, the
assignment of markers to segments in the skeleton, and the
relative location of each marker with respect to the segment
to which it is assigned. From this information our method is
able to reconstruct orientation over time for each segment.
Estimating this quantity directly from markers is an unsta-
ble process; by fitting a skeleton to the data our method
provides a much more stable means of finding orientation.
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